Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
3.
Mol Biomed ; 3(1): 43, 2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2162455

ABSTRACT

GSK3ß has been proposed to have an essential role in Coronaviridae infections. Screening of a targeted library of GSK3ß inhibitors against both SARS-CoV-2 and HCoV-229E to identify broad-spectrum anti-Coronaviridae inhibitors resulted in the identification of a high proportion of active compounds with low toxicity to host cells. A selected lead compound, T-1686568, showed low micromolar, dose-dependent activity against SARS-CoV-2 and HCoV-229E. T-1686568 showed efficacy in viral-infected cultured cells and primary 2D organoids. T-1686568 also inhibited SARS-CoV-2 variants of concern Delta and Omicron. Importantly, while inhibition by T-1686568 resulted in the overall reduction of viral load and protein translation, GSK3ß inhibition resulted in cellular accumulation of the nucleocapsid protein relative to the spike protein. Following identification of potential phosphorylation sites of Coronaviridae nucleocapsid, protein kinase substrate profiling assays combined with Western blotting analysis of nine host kinases showed that the SARS-CoV-2 nucleocapsid could be phosphorylated by GSK3ß and PKCa. GSK3ß phosphorylated SARS-CoV-2 nucleocapsid on the S180/S184, S190/S194 and T198 phospho-sites, following previous priming in the adjacent S188, T198 and S206, respectively. Such inhibition presents a compelling target for broad-spectrum anti-Coronaviridae compound development, and underlies the mechanism of action of GSK3ß host-directed therapy against this class of obligate intracellular pathogens.

4.
Microb Cell Fact ; 21(1): 21, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1666655

ABSTRACT

We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline-threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540-588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mass Spectrometry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
5.
Vaccines (Basel) ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1524226

ABSTRACT

Vaccines have been developed at "warp speed" to combat the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Although they are considered the best approach for preventing mortality, when assessing the safety of these vaccines, pregnant women have not been included in clinical trials. Thus, vaccine safety for this demographic, as well as for the developing fetus and neonate, remains to be determined. A global effort has been underway to encourage pregnant women to get vaccinated despite the uncertain risk posed to them and their offspring. Given this, post-hoc data collection, potentially for years, will be required to determine the outcomes of COVID-19 and vaccination on the next generation. Most COVID-19 vaccine reactions include injection site erythema, pain, swelling, fatigue, headache, fever and lymphadenopathy, which may be sufficient to affect fetal/neonatal development. In this review, we have explored components of the first-generation viral vector and mRNA COVID-19 vaccines that are believed to contribute to adverse reactions and which may negatively impact fetal and neonatal development. We have followed this with a discussion of the potential for using an ovine model to explore the long-term outcomes of COVID-19 vaccination during the prenatal and neonatal periods.

6.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: covidwho-1197300

ABSTRACT

Preexisting cross-reactivity to SARS-CoV-2 occurs in the absence of prior viral exposure. However, this has been difficult to quantify at the population level due to a lack of reliably defined seroreactivity thresholds. Using an orthogonal antibody testing approach, we estimated that about 0.6% of nontriaged adults from the greater Vancouver, Canada, area between May 17 and June 19, 2020, showed clear evidence of a prior SARS-CoV-2 infection, after adjusting for false-positive and false-negative test results. Using a highly sensitive multiplex assay and positive/negative thresholds established in infants in whom maternal antibodies have waned, we determined that more than 90% of uninfected adults showed antibody reactivity against the spike protein, receptor-binding domain (RBD), N-terminal domain (NTD), or the nucleocapsid (N) protein from SARS-CoV-2. This seroreactivity was evenly distributed across age and sex, correlated with circulating coronaviruses' reactivity, and was partially outcompeted by soluble circulating coronaviruses' spike. Using a custom SARS-CoV-2 peptide mapping array, we found that this antibody reactivity broadly mapped to spike and to conserved nonstructural viral proteins. We conclude that most adults display preexisting antibody cross-reactivity against SARS-CoV-2, which further supports investigation of how this may impact the clinical severity of COVID-19 or SARS-CoV-2 vaccine responses.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , British Columbia/epidemiology , COVID-19/blood , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Serological Testing/statistics & numerical data , COVID-19 Vaccines/administration & dosage , Cross Reactions/immunology , Cross-Sectional Studies , Female , Geography , Healthy Volunteers , Humans , Immunity, Humoral , Immunoassay/statistics & numerical data , Male , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL